Resolutions of almost complete intersections
نویسندگان
چکیده
منابع مشابه
Veronesean Almost Binomial Almost Complete Intersections
The second Veronese ideal In contains a natural complete intersection Jn generated by the principal 2-minors of a symmetric (n× n)-matrix. We determine subintersections of the primary decomposition of Jn where one intersectand is omitted. If In is omitted, the result is the other end of a complete intersection link as in liaison theory. These subintersections also yield interesting insights int...
متن کاملGeneralized Complete Intersections with Linear Resolutions
We determine the simplicial complexes ∆ whose Stanley-Reisner ideals I∆ have the following property: for all n ≥ 1 the powers In ∆ have linear resolutions and finite length local cohomologies.
متن کاملMINIMAL FREE RESOLUTIONS over COMPLETE INTERSECTIONS
We begin the chapter with some history of the results that form the background of this book. We then define higher matrix factorizations, our main focus. While classical matrix factorizations were factorizations of a single element, higher matrix factorizations deal directly with sequences of elements. In section 1.3, we outline our main results. Throughout the book, we use the notation introdu...
متن کاملThe Equations of Almost Complete Intersections
In this paper we examine the role of four Hilbert functions in the determination of the defining relations of the Rees algebra of almost complete intersections of finite colength. Because three of the corresponding modules are Artinian, some of these relationships are very effective, opening up tracks to the determination of the equations and also to processes of going from homologically define...
متن کاملRemarks on Non-commutative Crepant Resolutions of Complete Intersections
We study obstructions to existence of non-commutative crepant resolutions, in the sense of Van den Bergh, over local complete intersections.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1992
ISSN: 0021-8693
DOI: 10.1016/0021-8693(92)90174-k